Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.
نویسندگان
چکیده
Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque.
منابع مشابه
Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing.
BACKGROUND Previous studies have indicated that higher knee joint laxity may be indicative of an increased risk of anterior cruciate ligament (ACL) injuries. Despite the frequent clinical use of knee arthrometry in the evaluation of knee laxity, little data exist to correlate instrumented laxity measures and ACL strain during dynamic high-risk activities. Purpose/ HYPOTHESES The purpose of th...
متن کاملOn the Fatigue Life of the Anterior Cruciate Ligament during Simulated Pivot Landings
Passive collagenous structures such as rabbit medial collateral ligament exhibit fatigue behavior under cyclic loading: the larger the magnitude of repetitive loading, the fewer the number of loading cycles until failure [1]. A knowledge gap exists as to whether the human ACL might also exhibit fatigue behavior under cyclic loading. If so, this would help explain why an ACL rupture can occur du...
متن کاملThe effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study.
Valgus moments on the knee joint during single-leg landing have been suggested as a risk factor for anterior cruciate ligament (ACL) injury. The purpose of this study was to test the influence of isolated valgus moment on ACL strain during single-leg landing. Physiologic levels of valgus moments from an in vivo study of single-leg landing were applied to a three-dimensional dynamic knee model, ...
متن کاملThe forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology.
PURPOSE Although it is well known that the anterior cruciate ligament (ACL) is a primary restraint of the knee under anterior tibial load, the role of the ACL in resisting internal tibial torque and the pivot shift test is controversial. The objective of this study was to determine the effect of these 2 external loading conditions on the kinematics of the intact and ACL-deficient knee and the i...
متن کاملUni-directional coupling between tibiofemoral frontal and axial plane rotation supports valgus collapse mechanism of ACL injury.
Despite general agreement on the effects of knee valgus and internal tibial rotation on anterior cruciate ligament (ACL) loading, compelling debate persists on the interrelationship between these rotations and how they contribute to the multi-planar ACL injury mechanism. This study investigates coupling between knee valgus and internal tibial rotation and their effects on ACL strain as a quanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2012